Stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems using stochastic maximum principle

نویسندگان

  • R. C. Hu
  • W. Q. Zhu
چکیده

A stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems is proposed based on the stochastic averaging method, stochastic maximum principle and stochastic differential game theory. First, the partially completed averaged Itô stochastic differential equations are derived from a given system by using the stochastic averaging method for quasi-Hamiltonian systems with uncertain parameters. Then, the stochastic Hamiltonian system for minimax optimal control with a given performance index is established based on the stochastic maximum principle. The worst disturbances are determined by minimizing the Hamiltonian function, and the worst-case optimal controls are obtained by maximizing the minimal Hamiltonian function. The differential equation for adjoint process as a function of system energy is derived from the adjoint equation by using the Itô differential rule. Finally, two examples of controlled uncertain quasi-Hamiltonian systems are worked out to illustrate the application and effectiveness of the proposed control strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax LQG Control of Stochastic Partially Observed Uncertain Systems

We consider an infinite-horizon linear-quadratic minimax optimal control problem for stochastic uncertain systems with output measurement. A new description of stochastic uncertainty is introduced using a relative entropy constraint. For the stochastic uncertain system under consideration, a connection between the worst-case control design problem and a specially parametrized risk-sensitive sto...

متن کامل

A Stochastic Optimal Control Strategy for Partially Observable Nonlinear Systems

A stochastic optimal control strategy for partially observable nonlinear systems is proposed. The optimal control force consists of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dyn...

متن کامل

Optimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming

In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain ...

متن کامل

Maximum Principles of Markov Regime-Switching Forward-Backward Stochastic Differential Equations with Jumps and Partial Information

Résumé/Abstract: In this talk, we present three versions of maximum principle for a stochastic optimal control problem of Markov regime-switching forward-backward stochastic differential equations with jumps (FBSDEJs). A general sufficient maximum principle for optimal control for a system driven by a Markov regime-switching forward and backward jump-diffusion model is developed. After, an equi...

متن کامل

A Multi-Stage Single-Machine Replacement Strategy Using Stochastic Dynamic Programming

In this paper, the single machine replacement problem is being modeled into the frameworks of stochastic dynamic programming and control threshold policy, where some properties of the optimal values of the control thresholds are derived. Using these properties and by minimizing a cost function, the optimal values of two control thresholds for the time between productions of two successive nonco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013